Probing formation of cargo/importin-α transport complexes in plant cells using a pathogen effector

نویسندگان

  • Lennart Wirthmueller
  • Charlotte Roth
  • Georgina Fabro
  • Marie-Cécile Caillaud
  • Ghanasyam Rallapalli
  • Shuta Asai
  • Jan Sklenar
  • Alexandra M E Jones
  • Marcel Wiermer
  • Jonathan D G Jones
  • Mark J Banfield
چکیده

Importin-αs are essential adapter proteins that recruit cytoplasmic proteins destined for active nuclear import to the nuclear transport machinery. Cargo proteins interact with the importin-α armadillo repeat domain via nuclear localization sequences (NLSs), short amino acids motifs enriched in Lys and Arg residues. Plant genomes typically encode several importin-α paralogs that can have both specific and partially redundant functions. Although some cargos are preferentially imported by a distinct importin-α it remains unknown how this specificity is generated and to what extent cargos compete for binding to nuclear transport receptors. Here we report that the effector protein HaRxL106 from the oomycete pathogen Hyaloperonospora arabidopsidis co-opts the host cell's nuclear import machinery. We use HaRxL106 as a probe to determine redundant and specific functions of importin-α paralogs from Arabidopsis thaliana. A crystal structure of the importin-α3/MOS6 armadillo repeat domain suggests that five of the six Arabidopsis importin-αs expressed in rosette leaves have an almost identical NLS-binding site. Comparison of the importin-α binding affinities of HaRxL106 and other cargos in vitro and in plant cells suggests that relatively small affinity differences in vitro affect the rate of transport complex formation in vivo. Our results suggest that cargo affinity for importin-α, sequence variation at the importin-α NLS-binding sites and tissue-specific expression levels of importin-αs determine formation of cargo/importin-α transport complexes in plant cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hop-on hop-off: importin-α-guided tours to the nucleus in innate immune signaling

Nuclear translocation of immune regulatory proteins and signal transducers is an essential process in animal and plant defense signaling against pathogenic microbes. Import of proteins containing a nuclear localization signal (NLS) into the nucleus is mediated by nuclear transport receptors termed importins, typically dimers of a cargo-binding α-subunit and a β-subunit that mediates translocati...

متن کامل

An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor

Plants use autophagy to safeguard against infectious diseases. However, how plant pathogens interfere with autophagy-related processes is unknown. Here, we show that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans, binds host autophagy protein ATG8CL to stimulate autophagosome formation. PexRD54 depletes the autophagy cargo receptor Joka2 out of ATG8CL complexe...

متن کامل

Structural basis for the nuclear protein import cycle.

Transport of macromolecules between the nuclear and cytoplasmic compartments through NPCs (nuclear pore complexes) is mediated by soluble transport factors that are commonly members of the importin-beta superfamily. In the nuclear protein import cycle, importin-beta binds cargo in the cytoplasm (usually via the importin-alpha adaptor) and transports it through NPCs with which it interacts trans...

متن کامل

Single-molecule measurements of importin alpha/cargo complex dissociation at the nuclear pore.

Macromolecules are transported between the cytoplasm and the nucleoplasm of eukaryotic cells through nuclear pore complexes (NPCs). Large (more than approximately 40 kDa) transport cargoes imported into the nucleus typically form a complex with at least one soluble transport cofactor of the importin (Imp) beta superfamily. Many cargoes require an accessory cofactor, Imp alpha, which binds to Im...

متن کامل

Nuclear Size Is Regulated by Importin α and Ntf2 in Xenopus

The size of the nucleus varies among different cell types, species, and disease states, but mechanisms of nuclear size regulation are poorly understood. We investigated nuclear scaling in the pseudotetraploid frog Xenopus laevis and its smaller diploid relative Xenopus tropicalis, which contains smaller cells and nuclei. Nuclear scaling was recapitulated in vitro using egg extracts, demonstrati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2015